Rethinking the excitotoxic ionic milieu: the emerging role of Zn(2+) in ischemic neuronal injury.
نویسندگان
چکیده
Zn(2+) plays an important role in diverse physiological processes, but when released in excess amounts it is potently neurotoxic. In vivo trans-synaptic movement and subsequent post-synaptic accumulation of intracellular Zn(2+) contributes to the neuronal injury observed in some forms of cerebral ischemia. Zn(2+) may enter neurons through NMDA channels, voltage-sensitive calcium channels, Ca(2+)-permeable AMPA/kainate (Ca-A/K) channels, or Zn(2+)-sensitive membrane transporters. Furthermore, Zn(2+) is also released from intracellular sites such as metallothioneins and mitochondria. The mechanisms by which Zn(2+) exerts its potent neurotoxic effects involve many signaling pathways, including mitochondrial and extra-mitochondrial generation of reactive oxygen species (ROS) and disruption of metabolic enzyme activity, ultimately leading to activation of apoptotic and/or necrotic processes. As is the case with Ca(2+), neuronal mitochondria take up Zn(2+) as a way of modulating cellular Zn(2+) homeostasis. However, excessive mitochondrial Zn(2+) sequestration leads to a marked dysfunction of these organelles, characterized by prolonged ROS generation. Intriguingly, in direct comparison to Ca(2+), Zn(2+) appears to induce these changes with a considerably greater degree of potency. These effects are particularly evident upon large (i.e., micromolar) rises in intracellular Zn(2+) concentration ([Zn(2+)](i)), and likely hasten necrotic neuronal death. In contrast, sub-micromolar [Zn(2+)](i) increases promote release of pro-apoptotic factors, suggesting that different intensities of [Zn(2+)](i) load may activate distinct pathways of injury. Finally, Zn(2+) homeostasis seems particularly sensitive to the environmental changes observed in ischemia, such as acidosis and oxidative stress, indicating that alterations in [Zn(2+)](i) may play a very significant role in the development of ischemic neuronal damage.
منابع مشابه
Change of Nurr1 expression in mouse hippocampal CA3 region following excitotoxic neuronal damage
Objective(s): Nuclear receptor-related protein 1 (Nurr1), one of immediate-early genes, is a member of orphan nuclear receptor family. The aim of this study was to investigate the time-dependent change of Nurr1 protein expression in the mouse hippocampal CA3 region following kainic acid (KA)-induced excitotoxic neuronal damage.Materials and Methods:</...
متن کاملDisparate roles of zinc in chemical hypoxia-induced neuronal death
Accumulating evidence has provided a causative role of zinc (Zn(2+)) in neuronal death following ischemic brain injury. Using a hypoxia model of primary cultured cortical neurons with hypoxia-inducing chemicals, cobalt chloride (1 mM CoCl2), deferoxamine (3 mM DFX), and sodium azide (2 mM NaN3), we evaluated whether Zn(2+) is involved in hypoxic neuronal death. The hypoxic chemicals rapidly eli...
متن کاملCyclin e1 regulates Kv2.1 channel phosphorylation and localization in neuronal ischemia.
Kv2.1 is a major delayed rectifying K(+) channel normally localized to highly phosphorylated somatodendritic clusters in neurons. Excitatory stimuli induce calcineurin-dependent dephosphorylation and dispersal of Kv2.1 clusters, with a concomitant hyperpolarizing shift in the channel's activation kinetics. We showed previously that sublethal ischemia, which renders neurons transiently resistant...
متن کاملZinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels.
Transient receptor potential melastatin 7 (TRPM7) channels are novel Ca(2+)-permeable non-selective cation channels ubiquitously expressed. Activation of TRPM7 channels has been shown to be involved in cellular Mg(2+) homeostasis, diseases caused by abnormal magnesium absorption, and in Ca(2+)-mediated neuronal injury under ischemic conditions. Here we show strong evidence suggesting that TRPM7...
متن کاملEffect of ischemic preconditioning on the expression of c-myb in the CA1 region of the gerbil hippocampus after ischemia/reperfusion injury
Objective(s): In the present study, we investigated the effect of ischemic preconditioning (IPC) on c-myb immunoreactivity as well as neuronal damage/death after a subsequent lethal transient ischemia in gerbils. Materials and Methods: IPC was subjected to a 2 min sublethal ischemia and a lethal transient ischemia was given 5 min transient ischemia. The animals in all of the groups were given ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current molecular medicine
دوره 4 2 شماره
صفحات -
تاریخ انتشار 2004